1: 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13: 14: 15: 16: 17: 18: 19: 20: 21: 22: 23: 24: 25: 26: 27: 28: 29: 30: 31: 32: 33: 34: 35: 36: 37: 38: 39: 40: 41: 42: 43: 44: 45: 46: 47: 48: 49: 50: 51: 52: 53: 54: 55: 56: 57: 58: 59: 60: 61: 62: 63: 64: 65: 66: 67: 68: 69: 70: 71: 72: 73: 74: 75: 76: 77: 78: 79: 80: 81: 82: 83: 84: 85: 86: 87: 88: 89: 90: 91: 92: 93: 94: 95: 96: 97: 98: 99: 100: 101: 102: 103: 104: 105: 106: 107: 108: 109: 110: 111: 112: 113: 114: 115: 116: 117: 118: 119: 120: 121: 122: 123: 124: 125: 126: 127:
| unit LinReg_Unit;
interface
Type TTLRResultsG1 = packed record a,b : Single; end;
Type TTLRResultsG2 = packed record a,b,c : Single; end;
Type TTLRPoint = packed record x,y : Single; end;
Type TTLRInputs = packed record data : Array of TTLRPoint; count : Cardinal; end;
Function DoLinRegG1(points:TTLRInputs; out r:TTLRResultsG1):Boolean; Function DoLinRegG2(points:TTLRInputs; out r:TTLRResultsG2):Boolean;
implementation
uses GaussJordan_Unit;
Function DoLinRegG1(points:TTLRInputs; out r:TTLRResultsG1):Boolean; var mat : TTMatrix; x : TTVector; i : Integer; begin SetLength(mat, 2, 3);
mat[0,0] := 0; mat[0,1] := 0; mat[0,2] := 0; mat[1,0] := 0; mat[1,1] := 0; mat[1,2] := 0;
for i := 0 to points.count-1 do begin mat[0,0] := mat[0,0] + points.data[i].x*points.data[i].x;
mat[0,1] := mat[0,1] + points.data[i].x; mat[1,0] := mat[0,1];
mat[1,1] := mat[1,1] + 1;
mat[0,2] := mat[0,2] + points.data[i].y*points.data[i].x; mat[1,2] := mat[1,2] + points.data[i].y; end;
if not GaussJordan(mat, x) then begin Result := False; Exit; end;
r.a := x[0]; r.b := x[1];
Result := True; end;
Function DoLinRegG2(points:TTLRInputs; out r:TTLRResultsG2):Boolean; var mat : TTMatrix; x : TTVector; i : Integer; begin SetLength(mat, 3, 4);
mat[0,0] := 0; mat[0,1] := 0; mat[0,2] := 0; mat[0,3] := 0; mat[1,0] := 0; mat[1,1] := 0; mat[1,2] := 0; mat[1,3] := 0; mat[2,0] := 0; mat[2,1] := 0; mat[2,2] := 0; mat[2,3] := 0;
for i := 0 to points.count-1 do begin mat[0,0] := mat[0,0] + points.data[i].x*points.data[i].x* points.data[i].x*points.data[i].x;
mat[0,1] := mat[0,1] + points.data[i].x*points.data[i].x*points.data[i].x; mat[1,0] := mat[0,1];
mat[0,2] := mat[0,2] + points.data[i].x*points.data[i].x; mat[1,1] := mat[0,2]; mat[2,0] := mat[0,2];
mat[1,2] := mat[1,2] + points.data[i].x; mat[2,1] := mat[1,2];
mat[2,2] := mat[2,2] + 1;
mat[0,3] := mat[0,3] + points.data[i].y*(points.data[i].x*points.data[i].x); mat[1,3] := mat[1,3] + points.data[i].y*points.data[i].x; mat[2,3] := mat[2,3] + points.data[i].y; end;
if not GaussJordan(mat, x) then begin Result := False; Exit; end;
r.a := x[0]; r.b := x[1]; r.c := x[2];
Result := True; end;
end. |